

200 Advanced Digital Systems

plemented with a

linear feedback shift register—

a shift register with feedback generated by a set of
exclusive-OR gates. The placement of the XOR feedback terms is mathematically defined by a bi-
nary polynomial. Figure 9.5 shows scrambling logic used to encode and decode eight-bit data words
using the function F(X) = X

7

+ X

4

 + 1. The mathematical theory behind such polynomials is based
on

Galois fields

, discovered by Evariste Galois, a nineteenth century French mathematician. XOR
gates are placed at each bit position specified by the polynomial exponents, and their outputs feed
back to the shift register input to scramble and feed forward to the output to descramble.

This type of scrambling should not be confused with more sophisticated security and data protec-
tion algorithms. Data scrambled in this manner is done so for purposes of randomizing the bits on
the communications channel to achieve an average DC value of 0. Polynomial scrambling works
fairly well and is relatively easy to implement, but such schemes are subject to undesired cases in
which the application of select repetitive data patterns can cause an imbalance in the number of 1s
and 0s, thereby reducing the benefit of scrambling. The probability of settling into such cases is low,
making scrambling a suitable coding mechanism for certain data links.

While shown schematically as a serial process, these algorithms can be converted to parallel logic
by accumulating successive XOR operations over eight bits shifted through the polynomial register.
In cases when the coding logic lies outside of the serdes in custom logic, it is necessary to convert
this serial process into a parallel one, because data coming from the serdes will be in parallel form at
a corresponding clock frequency. Working out the logic for eight bits at a time allows processing one
byte per clock cycle. The serial to parallel algorithm conversion can be done over any number of bits
that is relevant to a particular application. This process is conceptually easy, but it is rather tedious to
actually work out the necessary logic.

A table can be formed to keep track of the polynomial code vector, C[6:0], and the output vector,
Q[7:0], as functions of the input vector, D[7:0]. Table 9.1 shows the state of C and Q, assuming that
the least-significant bit (LSB) is transmitted first, during each of eight successive cycles by listing
terms that are XORed together.

The final column, D[7], and the bottom row, Q, indicate the final state of the code and output vec-
tors, respectively. The code vector terms can be simplified, because some iterative XOR feedback
terms cancel each other out as a result of the identity that . Q[7:0] can be taken directly
from the table because there are no duplicate XOR terms. The simplified code vector, C[6:0], is
shown in Table 9.2.

Serial
Data In

Scrambled
Data Out

X7+X4+1 Scrambler

Scrambled
Data In Serial

Data Out

xor D

xor

xor

xor

X7+X4+1 Descrambler

D D DD DD

D D D DD DD

FIGURE 9.5 Eight-bit scrambling/descrambling logic.

A A⊕ 0=

-Balch.book Page 200 Thursday, May 15, 2003 3:46 PM

Networking 201

Following the same process, code and output vectors for the associated descrambling logic can be
derived as well, the results of which are shown in Table 9.3. In this case, the code vector, C[6:0], is
easy, because it is simply the incoming scrambled data shifted one bit at a time without any XOR
feedback terms. The output vector, Q[7:0], is also easier, because the XOR logic feeds forward with-
out any iterative feedback terms.

TABLE

9.1 Scrambler Logic State Table

Code/Output
Vector Bits

Input Vector Bits, One Each Clock Cycle

D0 D1 D2 D3 D4 D5 D6 D7

C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C6 D6 C3
D3 C0 D0

C4

C0 D0 C4
D7 C4 D4
C1 D1 C5

C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C6 D6 C3
D3 C0 D0

C4

C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C5 D5 C2
D2 C6

C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C4 D4 C1
D1 C5

C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6 C3 D3 C0
D0 C4

C1 C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5 C2 D2 C6

C0 C1 C2 C3 C4 C5 C6 C0 D0 C4 C1 D1 C5

Q C0 C1 C2 C3 C4 C5 C6 C0 D0 C4

TABLE

9.2 Simplified Scrambling Code
Vector Logic

Code Vector Bits XOR Logic

C6 C0 D0 C1 D1 D4 C5 D7

C5 C0 D0 C3 D3 C4 C6 D6

C4 C2 D2 C5 D5 C6

C3 C1 D1 C4 D4 C5

C2 C0 D0 C3 D3 C4

C1 C2 D2 C6

C0 C1 D1 C5

-Balch.book Page 201 Thursday, May 15, 2003 3:46 PM

